
mathematics

Article

Multiple Comparisons for Exponential Median Lifetimes with
the Control Based on Doubly Censored Samples

Shu-Fei Wu

����������
�������

Citation: Wu, S.-F. Multiple

Comparisons for Exponential Median

Lifetimes with the Control Based on

Doubly Censored Samples.

Mathematics 2021, 9, 76.

https://doi.org/math9010076

Received: 18 November 2020

Accepted: 28 December 2020

Published: 31 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the author. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Statistics, Tamkang University, Tamsui, New Taipei City 251301, Taiwan; 100665@mail.tku.edu.tw;
Tel.: +886-2-26215656 (ext. 2876); Fax: +886-2-26209732

Abstract: Under doubly censoring, the one-stage multiple comparison procedures with the control
in terms of exponential median lifetimes are presented. The uniformly minimum variance unbiased
estimator for median lifetime is found. The upper bounds, lower bounds and two-sided confidence
intervals for the difference between each median lifetimes and the median lifetime of the control
population are developed. Statistical tables of critical values are constructed for the practical use
of our proposed procedures. Users can use these simultaneous confidence intervals to determine
whether the performance of treatment populations is better than or worse than the control population
in agriculture and pharmaceutical industries. At last, one practical example is provided to illustrate
the proposed procedures.

Keywords: one-stage procedure; doubly censored samples; multiple comparison with a control

1. Introduction

In reliability studies, the lifetimes of some products may not have normal distribu-
tion. The exponential distribution we focus on in this study is one type of frequently
used lifetime distribution and some examples can be seen in Johnson et al. [1]. For this
type of lifetime distribution, Ng et al. [2] proposed multiple comparisons with a control
for location parameters when the scale parameters are equal. For the case of unequal
scale parameters (heteroscedasticity), Lam and Ng [3] proposed design-oriented two-stage
multiple comparison procedures for location parameters with the control. However, the ad-
ditional sample size for the second stage may be large when scale parameters are large.
Wu [4] proposed one-stage multiple comparison procedures with the control for location
parameter based on the doubly censored sample. Wu [5] presented a modified procedure
to improve the coverage probabilities and confidence length in Wu [4]. Instead of making
multiple comparison with the control, Wu and Wu [6] investigated the multiple compari-
son procedures with the average for exponential location parameters using the two-stage
sampling procedures. Wu et al. [7] considered one-stage procedures comparing with the
average instead of two-stage procedures. Based on the doubly censored sample, Wu [8]
proposed multiple comparisons with the average for exponential location parameters
under heteroscedasticity. For multiply type II censored sample, Wu [9] proposed a predic-
tion interval for the future observation using the estimator of general weighted moment
estimator (GWME). If the experimenters are interested in comparing the mean lifetimes
instead of location parameters, Wu [10] proposed the one-stage multiple comparisons for
exponential mean lifetimes with the control. Wu [11] proposed the one-stage multiple
comparison procedures for exponential mean lifetimes with the control based on the doubly
type II censored sample. Since the shape of the distribution of exponential lifetime is a
right-skewed, median lifetimes should be used to provide more robust measurements for
the central tendency of exponential distribution. Therefore, Wu [12] proposed procedures
to compare the median lifetimes of exponential lifetime distributions with the control.
In some experiments, the experimenters are not able to collect a complete sample due to
the financial budget limit or experimental difficulties. Thus the censoring occurred. In this
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research, we are focusing on type II censoring since it is a frequently used type of censoring.
This type of censoring is briefly introduced as follows: Suppose that there are n items that
are put in a life test. If the first r lifetimes and the last s lifetimes are missing, the middle
observed lifetimes are called the doubly Type II censored sample, where r is the size of
sample for left censoring and s is the size of sample for right censoring. In this research,
k (≥ 2) treatment populations denoted by π1, · · · , πk are considered and the lifetime for
the ith population has exponential distribution denoted by E(θi, σi), i = 1, · · · , k, where the
location parameters θ1, · · · , θk are unknown and scale parameters σ1, · · · , σk are unknown
and unequal. The cdf (cumulative distribution function) of the ith exponentially distributed
population is F(x) = 1− exp

(
− x−θi

σi

)
. Letting F(x) = 0.5. Then the median δi is found

to be δi = θi + ln 2 σi, i = 1, · · · , k. Let πk be the control population. The goal of this
research is to find the uniformly minimum variance unbiased estimator (UMVUE) for the
median lifetime and the results are presented in Section 2. The other goal is to provide
the multiple comparisons of k-1 treatment median lifetimes with the control population
and the research methods are presented in Section 3. In Section 4, an example of doing
the multiple comparisons with the control by comparing the median duration time of
remission under the treatment of four drugs is given to demonstrate the main results of
this paper. In the end, we summarized the main conclusions in Section 5.

2. The Uniformly Minimum Variance Unbiased Estimator (UMVUE) for the
Median Lifetime

Firstly, we give a brief definition of the doubly censored samples as follows:
Let Xi1, · · · , Xin be the random sample of size n (≥ 2) from πi and Xi(1) < · · · < Xi(n) are
the ordered sample. Suppose that the first r lifetimes Xi(1), · · · , Xi(r) and the last s lifetimes
Xi(n−s+1), · · · , Xi(n) are censored. Then the middle n−s−r observations Xi(r+1), · · · , Xi(n−s)
are so-called the doubly Type II censored sample collected for population πi, i = 1, . . . , k.

From Wu [8], after taking the standardizing transformation to each Xi(j) as X∗i(j) =
Xi(j)−θi

σi
,

j = r + 1, . . . , n− s, we can obtain the doubly censored sample X∗i(r+1), . . . , X∗i(n−s) from the
standard exponential distribution. The generalized spacings Zi(r+2) = (n− r− 1)(X∗i(r+2)−
X∗i(r+1)), . . . , Zi(n−s) = (s + 1)(X∗i(n−s) − X∗i(n−s−1)) are independent and identically dis-
tributed from a standard exponential distribution and they are independent with X∗i(r+1).

Let S̃i =
n−s
∑

j=r+2
Zi(j)/ν = ∑n−s

j=r+2 (Xi(j) − Xi(r+1))/ν. It is well known that Ui = 2νS̃i/σi

has a chi-squared distribution with 2ν degrees of freedom, where ν = n − r − s − 1.
Therefore S̃i is the unbiased estimator of σi. From Kambo [13], it has shown that the
complete sufficient statistics for (θi, σi) is (Xi(r+1), S̃i). Thus, the UMVUE for θi is Xi(r+1) +

νS̃i ln((n− r)/n)/(n − r − s) and the UMVUE for σi is S̃i. Furthermore, the UMVUE
for the ith median lifetime δi = θi + ln 2 σi is δ̂i = Xi(r+1) + νS̃i ln((n− r)/n)/(n − r −
s) + ln 2S̃i= Xi(r+1) + ((ν + 1) ln 2 + ν ln((n− r)/n))S̃i/(ν + 1)= Xi(r+1) + ν∗S̃i, where
ν∗ = ((ν + 1) ln 2 + ν ln((n− r)/n))/(ν + 1). If we are interested in the difference be-
tween the ith treatment median lifetime with the control population (the kth population),
i.e., δi− δk, the UMVUE for this parameter is Xi(r+1)−Xk(r+1) + ν∗(S̃i− S̃k), i = 1, . . . , k−1.

3. Multiple Comparisons with the Control for Exponential Median Lifetimes Based on
Doubly Censored Samples Using One-Stage Procedures

Based on this UMVUE for the ith median lifetime δi = θi + ln 2 σi in Section 2, we could
construct a pivotal quantity

G̃i =
δi−δ̂i
2νS̃i

=
δi−Xi(r+1)−ν∗ S̃i

2νS̃i
=

(θi+ln 2 σi−Xi(r+1)−ν∗ S̃i)/σi

2νS̃i/σi
= −Ti+ln 2−ν∗ S̃i/σi

2νS̃i/σi

= −Ti+ln 2
Ui

− ν∗
2υ , where Ti =

Xi(r+1)−θi
σi

.
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It is very hard to find the exact distribution of G̃i. The distribution of G̃i is only
depending on random variables of Ti and Ui, where exp(−Ti) has a beta distribution with
parameters n−r and r + 1 and Ui has a chi-squared distribution with 2ν degrees of freedom,
where ν = n− r− s− 1 and they are independent. Therefore, we can generate independent
random variables Ti and Ui to generate random variable G̃i. By the Monte-Carlo simulation
method, we can find the empirical distribution of G̃i.

Making use of the pivotal quantities G̃i’s, we can start to develop the multiple compar-
ison procedures for each median lifetime with the control (the kth population is regarded as
the control population), i.e., δi − δk, i = 1, · · · , k− 1 based on the doubly censored samples
in the following theorem:

Theorem 1. Let c̃ = max
i=1,··· ,k

2νS̃i and ν∗ = ((ν + 1) ln 2 + ν ln((n− r)/n))/(ν + 1). For a

given confidence coefficient 0 < P∗ < 1, we have the upper confidence bounds, lower confidence
bounds and simultaneous confidence intervals for δi − δk, i = 1, · · · , k− 1 as follows:

(a)
Xi(r+1) − Xk(r+1) + ν∗

(
S̃i − S̃k

)
+ c̃

..
hU are the upper confidence bounds for δi − δk,

i = 1, · · · , k− 1 with confidence level of P∗, where
..
hU is the 100Pth percentile of the dis-

tribution of G1 = max(G̃i,−G̃k, G̃i − G̃k, i = 1, · · · , k− 1).

(b)
Xi(r+1) − Xk(r+1) + ν∗

(
S̃i − S̃k

)
− c̃i

..
hL are the lower confidence bounds for δi − δk,

i = 1, · · · , k− 1 with confidence level of P∗ where
..
hL is the 100Pth percentile of the dis-

tribution of G2 = max(−G̃i, G̃k,−G̃i + G̃k, i = 1, · · · , k− 1).

(c)
(Yi − Yk + ν∗

(
S̃i − S̃k

)
± c̃

..
ht) are simultaneous two-sided confidence intervals for δi −

δk, i = 1, · · · , k − 1 with confidence coefficient P∗ where
..
ht is the 100Pth percentile of the

distribution of G3 = max(
∣∣∣G̃i

∣∣∣, ∣∣∣G̃k

∣∣∣, ∣∣∣G̃k − G̃i

∣∣∣, i = 1, · · · , k− 1) .

Proof of Theorem 1.
For (a), we have

P
(

δi − δk ≤ Xi(r+1) − Xk(r+1) + ν∗
(

S̃i − S̃k

)
+ c̃

..
hU , i = 1, · · · , k− 1

)
= P

(
θi + ln 2σi − θk − ln 2σk ≤ Xi(r+1) − Xk(r+1) + ν∗

(
S̃i − S̃k

)
+ c̃

..
hU , i = 1, · · · , k− 1

)
=P
(

2νS̃i
σi
S̃i

−ν∗ S̃i+ln 2σi+θi−Yi
2νσi

≤ 2νS̃k
σk
S̃k

−ν∗ S̃k+ln 2σk+θk−Yk
2νσk

+ c̃
..
hU , i = 1, · · · , k− 1

)
= P

(
2νS̃kG̃k ≥ 2νS̃iG̃i − c̃

..
hU , i = 1, · · · , k− 1

)
≥ ES1,··· ,Sk P

(
2νS̃kG̃k ≥ 2νS̃iG̃i −max(2νS̃i, 2νS̃k)

..
hU , i = 1, · · · , k− 1

)
≥ P

(
G̃i ≤

..
hU , G̃k ≥ −

..
hU , G̃k ≥ G̃i −

..
hU , i = 1, · · · , k− 1

)
(the above inequality holds by using the Lemma in Lam [14,15] by setting a = 2νS̃k and
b = 2νS̃i.)

= P
(

G̃i ≤
..
hU , −G̃k ≤

..
hU , G̃i − G̃k ≤

..
hU , i = 1, · · · , k− 1

)
=P
(

max(G̃i,−G̃k, G̃i − G̃k, i = 1, · · · , k− 1) ≤
..
hU

)
=P(G1 ≤ hU)= P∗,

where G1 = max(G̃i,−G̃k, G̃i − G̃k, i = 1, · · · , k− 1).
Solving the above equation, we obtain

..
hU as the 100Pth percentile of the distribution

of G1 and the proof is thus completed.
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For (b), we have
P
(

δi − δk ≥ Xi(r+1) − Xk(r+1) + ν∗
(

S̃i − S̃k

)
− c̃

..
hL, i = 1, · · · , k− 1

)
=P
(

θi + ln 2σi − θk − ln 2σk ≥ Xi(r+1) − Xk(r+1) + ν∗
(

S̃i − S̃k

)
− c̃

..
hL, i = 1, · · · , k− 1

)
=P
(

2νS̃i
σi
S̃i

−ν∗ S̃i+ln 2σi+θi−Yi
2νσi

≥ 2νS̃k
σk
S̃k

−ν∗ S̃k+ln 2σk+θk−Yk)
2νσk

− c̃
..
hL, i = 1, · · · , k− 1

)
= P

(
2νS̃iG̃i ≥ 2νS̃kG̃k −max( Si

m , Sk
m )

..
hL, i = 1, · · · , k− 1

)
≥ ES1,··· ,Sk P

(
2νS̃iG̃i ≥ 2νS̃kG̃k −max( Si

m , Sk
m )

..
hL, i = 1, · · · , k− 1

)
≥ P

(
G̃i ≥ −

..
hL, G̃k ≤

..
hL, G̃i ≥ G̃k −

..
hL, i = 1, · · · , k− 1

)
(the above inequality holds by using the Lemma in Lam [14,15] by setting a = 2νS̃i and
b = 2νS̃k.)

≥ P
(
−G̃i ≤

..
hL, G̃k ≤

..
hL, G̃k − G̃i ≤

..
hL, i = 1, · · · , k− 1

)
=P
(

G2 ≤
..
hL

)
= P*, where G2 = max(−G̃i, G̃k,−G̃i + G̃k, i = 1, · · · , k− 1).

Solving the above equation, we obtain
..
hL as the 100Pth percentile of the distribution

of G2 and the proof is thus completed.
For (c), combining (a) and (b), we have
P
(

Xi(r+1) − Xk(r+1) + ν∗
(

S̃i − S̃k

)
− c̃

..
ht ≤ δi − δk ≤

Xi(r+1) − Xk(r+1) + ν∗
(

S̃i − S̃k

)
+ c̃

..
ht, i = 1, · · · , k− 1

)
= ES1,··· ,Sk P

(
−G̃i ≤

..
ht, G̃k ≤

..
ht, G̃k − G̃i ≤

..
ht ∩

−G̃k ≤
..
ht, G̃i ≤

..
ht, G̃i − G̃k ≤

..
ht, i = 1, · · · , k− 1

)
≥ P

(
max(

∣∣∣G̃i

∣∣∣, ∣∣∣G̃k

∣∣∣, ∣∣∣G̃k − G̃i

∣∣∣, i = 1, · · · , k− 1) ≤
..
ht, i = 1, · · · , k− 1

)
= P

(
G3 ≤

..
ht

)
= P∗,

where G3 = max(
∣∣∣G̃i

∣∣∣, ∣∣∣G̃k

∣∣∣, ∣∣∣G̃k − G̃i

∣∣∣, i = 1, · · · , k− 1) .

Solving the above equation, we obtain
..
ht as the 100Pth percentile of the distribution of

G3 and the proof is thus obtained. �

From Theorem 1, the critical values of
..
hU ,

..
hL and

..
ht are the 100Pth percentiles of the

distributions of G1, G2 and G3. Using Monte-Carlo simulation methods, the critical values
are the percentiles of the empirical distribution of G1, G2 and G3. They are listed in the
following table for k = 3(1)10, n = 20, 30, 60, r = 1, 2, 3, s = 0, 1, 2, and P* = 0.90, 0.95 and
0.975. The critical values for any given k, n, r, s and P* are available at the author’s site.
Refer to part (c) of Theorem 1, the confidence length is L1 = 2c̃ht. From Table 1, since

..
ht is

an increasing function of k, the length of simultaneous confidence interval (SCI) is getting
larger when we compare more treatments for fixed n, r, s and P∗.

Table 1. Critical values
..
hU ,

..
hL and

..
ht.

P * = 0.90 P * = 0.95 P * = 0.975

k n r s
..
hU

..
hL

..
ht

..
hU

..
hL

..
ht

..
hU

..
hL

..
ht

3 20

1
0

0.0113 0.0104 0.0135 0.0140 0.0130 0.0160 0.0165 0.0155 0.0185
2 0.0121 0.0113 0.0145 0.0150 0.0140 0.0172 0.0177 0.0166 0.0199
3 0.0131 0.0124 0.0157 0.0161 0.0153 0.0186 0.0190 0.0180 0.0214
1

1
0.0124 0.0113 0.0147 0.0153 0.0141 0.0175 0.0181 0.0168 0.0203

2 0.0133 0.0123 0.0158 0.0164 0.0152 0.0188 0.0194 0.0182 0.0218
3 0.0144 0.0135 0.0172 0.0177 0.0167 0.0204 0.0210 0.0198 0.0237
1

2
0.0136 0.0123 0.0161 0.0168 0.0154 0.0193 0.0200 0.0185 0.0224

2 0.0146 0.0134 0.0174 0.0181 0.0167 0.0208 0.0215 0.0200 0.0241
3 0.0159 0.0148 0.0190 0.0196 0.0184 0.0227 0.0233 0.0219 0.0263
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Table 1. Cont.

P * = 0.90 P * = 0.95 P * = 0.975

k n r s
..
hU

..
hL

..
ht

..
hU

..
hL

..
ht

..
hU

..
hL

..
ht

3

30

1
0

0.0057 0.0053 0.0067 0.0070 0.0065 0.0079 0.0082 0.0077 0.0091
2 0.0060 0.0056 0.0070 0.0073 0.0068 0.0083 0.0085 0.0081 0.0095
3 0.0062 0.0059 0.0074 0.0076 0.0072 0.0087 0.0089 0.0085 0.0099
1

1
0.0060 0.0056 0.0071 0.0074 0.0069 0.0084 0.0086 0.0082 0.0096

2 0.0063 0.0059 0.0075 0.0077 0.0072 0.0088 0.0090 0.0085 0.0100
3 0.0066 0.0062 0.0078 0.0081 0.0076 0.0092 0.0094 0.0089 0.0105
1

2
0.0064 0.0059 0.0076 0.0078 0.0073 0.0089 0.0092 0.0086 0.0102

2 0.0067 0.0062 0.0079 0.0082 0.0076 0.0093 0.0096 0.0090 0.0107
3 0.0070 0.0066 0.0083 0.0086 0.0080 0.0098 0.0100 0.0095 0.0112

60

1
0

0.0019 0.0018 0.0022 0.0023 0.0022 0.0026 0.0026 0.0025 0.0029
2 0.0019 0.0018 0.0023 0.0023 0.0022 0.0026 0.0027 0.0026 0.0030
3 0.0020 0.0019 0.0023 0.0024 0.0022 0.0027 0.0027 0.0026 0.0030
1

1
0.0019 0.0018 0.0023 0.0023 0.0022 0.0026 0.0027 0.0026 0.0030

2 0.0020 0.0019 0.0023 0.0024 0.0023 0.0027 0.0027 0.0026 0.0030
3 0.0020 0.0019 0.0024 0.0024 0.0023 0.0027 0.0028 0.0027 0.0031
1

2
0.0020 0.0019 0.0023 0.0024 0.0023 0.0027 0.0028 0.0027 0.0031

2 0.0020 0.0019 0.0024 0.0024 0.0023 0.0028 0.0028 0.0027 0.0031
3 0.0021 0.0020 0.0024 0.0025 0.0024 0.0028 0.0029 0.0028 0.0032

P * = 0.90 P * = 0.95 P * = 0.975

k n r s
..
hU

..
hL

..
ht

..
hU

..
hL

..
ht

..
hU

..
hL

..
ht

4

20

1
0

0.0128 0.0112 0.0146 0.0155 0.0137 0.0172 0.0180 0.0162 0.0197
2 0.0136 0.0122 0.0157 0.0165 0.0149 0.0184 0.0192 0.0175 0.0211
3 0.0146 0.0135 0.0170 0.0177 0.0163 0.0200 0.0207 0.0192 0.0228
1

1
0.0140 0.0121 0.0160 0.0169 0.0149 0.0188 0.0197 0.0177 0.0216

2 0.0149 0.0133 0.0172 0.0181 0.0162 0.0203 0.0212 0.0192 0.0233
3 0.0161 0.0146 0.0186 0.0195 0.0178 0.0219 0.0228 0.0209 0.0252
1

2
0.0154 0.0132 0.0176 0.0186 0.0163 0.0208 0.0218 0.0194 0.0240

2 0.0165 0.0144 0.0190 0.0200 0.0178 0.0224 0.0235 0.0211 0.0258
3 0.0178 0.0160 0.0206 0.0217 0.0195 0.0243 0.0254 0.0230 0.0280

30

1
0

0.0064 0.0057 0.0073 0.0076 0.0069 0.0085 0.0088 0.0081 0.0096
2 0.0067 0.0060 0.0076 0.0079 0.0073 0.0089 0.0092 0.0085 0.0100
3 0.0069 0.0063 0.0080 0.0083 0.0076 0.0093 0.0096 0.0089 0.0105
1

1
0.0068 0.0060 0.0077 0.0081 0.0073 0.0090 0.0094 0.0086 0.0102

2 0.0070 0.0063 0.0081 0.0084 0.0077 0.0094 0.0097 0.0090 0.0106
3 0.0074 0.0067 0.0085 0.0088 0.0081 0.0098 0.0102 0.0094 0.0112
1

2
0.0072 0.0063 0.0082 0.0086 0.0077 0.0095 0.0099 0.0091 0.0108

2 0.0075 0.0067 0.0086 0.0090 0.0081 0.0100 0.0104 0.0095 0.0113
3 0.0078 0.0071 0.0090 0.0093 0.0086 0.0104 0.0108 0.0100 0.0119

60

1
0

0.0021 0.0019 0.0024 0.0025 0.0023 0.0027 0.0028 0.0026 0.0031
2 0.0021 0.0019 0.0024 0.0025 0.0023 0.0028 0.0029 0.0027 0.0031
3 0.0022 0.0020 0.0025 0.0025 0.0024 0.0028 0.0029 0.0028 0.0032
1

1
0.0021 0.0020 0.0024 0.0025 0.0023 0.0028 0.0029 0.0027 0.0031

2 0.0022 0.0020 0.0025 0.0026 0.0024 0.0029 0.0029 0.0028 0.0032
3 0.0022 0.0020 0.0025 0.0026 0.0025 0.0029 0.0030 0.0028 0.0033
1

2
0.0022 0.0020 0.0025 0.0026 0.0024 0.0029 0.0030 0.0028 0.0032

2 0.0022 0.0021 0.0026 0.0026 0.0025 0.0029 0.0030 0.0029 0.0033
3 0.0023 0.0021 0.0026 0.0027 0.0025 0.0030 0.0031 0.0029 0.0034
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Table 1. Cont.

P * = 0.90 P * = 0.95 P * = 0.975

k n r s
..
hU

..
hL

..
ht

..
hU

..
hL

..
ht

..
hU

..
hL

..
ht

6

20

1
0

0.0146 0.0121 0.0161 0.0172 0.0147 0.0187 0.0198 0.0172 0.0212
2 0.0155 0.0133 0.0173 0.0184 0.0159 0.0200 0.0212 0.0186 0.0228
3 0.0167 0.0147 0.0187 0.0198 0.0175 0.0217 0.0228 0.0204 0.0246
1

1
0.0159 0.0131 0.0176 0.0189 0.0159 0.0205 0.0218 0.0187 0.0233

2 0.0170 0.0144 0.0189 0.0202 0.0173 0.0220 0.0233 0.0203 0.0251
3 0.0184 0.0159 0.0206 0.0218 0.0191 0.0239 0.0252 0.0222 0.0272
1

2
0.0176 0.0143 0.0194 0.0208 0.0174 0.0226 0.0241 0.0205 0.0257

2 0.0189 0.0157 0.0209 0.0224 0.0190 0.0243 0.0259 0.0223 0.0278
3 0.0204 0.0174 0.0227 0.0243 0.0209 0.0265 0.0281 0.0245 0.0302

30

1
0

0.0072 0.0062 0.0080 0.0085 0.0074 0.0092 0.0096 0.0086 0.0103
2 0.0075 0.0065 0.0083 0.0088 0.0078 0.0096 0.0100 0.0090 0.0107
3 0.0079 0.0069 0.0087 0.0092 0.0082 0.0100 0.0105 0.0094 0.0112
1

1
0.0077 0.0065 0.0085 0.0090 0.0078 0.0097 0.0102 0.0091 0.0109

2 0.0080 0.0068 0.0088 0.0093 0.0082 0.0101 0.0106 0.0095 0.0114
3 0.0083 0.0072 0.0093 0.0098 0.0086 0.0106 0.0111 0.0100 0.0119
1

2
0.0081 0.0068 0.0090 0.0095 0.0082 0.0103 0.0108 0.0096 0.0116

2 0.0085 0.0072 0.0094 0.0099 0.0086 0.0108 0.0113 0.0100 0.0121
3 0.0088 0.0076 0.0098 0.0104 0.0091 0.0113 0.0118 0.0106 0.0127

60

1
0

0.0023 0.0021 0.0026 0.0027 0.0025 0.0029 0.0030 0.0028 0.0033
2 0.0024 0.0021 0.0026 0.0027 0.0025 0.0030 0.0031 0.0029 0.0033
3 0.0024 0.0022 0.0027 0.0028 0.0026 0.0031 0.0032 0.0029 0.0034
1

1
0.0024 0.0021 0.0027 0.0028 0.0025 0.0030 0.0031 0.0029 0.0033

2 0.0024 0.0022 0.0027 0.0028 0.0026 0.0031 0.0032 0.0029 0.0034
3 0.0025 0.0022 0.0028 0.0029 0.0026 0.0031 0.0032 0.0030 0.0035
1

2
0.0025 0.0022 0.0027 0.0028 0.0026 0.0031 0.0032 0.0030 0.0034

2 0.0025 0.0022 0.0028 0.0029 0.0026 0.0032 0.0033 0.0030 0.0035
3 0.0026 0.0023 0.0028 0.0030 0.0027 0.0032 0.0033 0.0031 0.0036

4. Example

One example of comparing the duration of remission under the use of four drugs in
the treatment of leukemia was used in this section. For each drug, n = 20 patients were
treated. The data of duration times by four drugs can be found in Table 1 of Wu and Wu [6]
and they claimed that the data is exponentially distributed on the treatment of each drug
and the scale parameters are unequal.

We applied Theorem 1 to this example to compare the median duration of remis-
sion times by using Drugs 1–3 with Drug 4 (the control population) denoted by δi − δ4,
i = 1, 2, 3. Three cases of censoring schemes of (r,s) = (1,1), (2,1), (1,2) are considered
for demonstration. The design variable c̃ = 150.7832 under (r,s) = (1,1); c̃ = 150.0608
under (r,s) = (2,1); c̃ = 136.9536 under (r,s) = (1,2). The critical values

..
hU ,

..
hL and

..
ht for

P∗ = 0.90, 0.95 and 0.975 can be found in Table 1 For example when P∗ = 0.90, the critical
values

..
hU = 0.0140,

..
hL = 0.0121 and

..
ht = 0.016 under (r,s) = (1,1);

..
hU = 0.0149,

..
hL = 0.0133

and
..
ht = 0.0172 under (r,s) = (2,1);

..
hU = 0.0154,

..
hL = 0.0132 and

..
ht= 0.0176 under (r,s) = (1,2).

The UMVUE for δi − δ4, i = 1, 2, 3 are Xi(r+1) − X4(r+1) + ν∗
(

S̃i − S̃4

)
= −5.5, −4.0817 and

−1.9723 under (r,s) = (1,1); Xi(r+1)−X4(r+1) + ν∗
(

S̃i − S̃4

)
=−5.3410,−3.9415 and−1.9252

under (r,s) = (2,1); Xi(r+1) − X4(r+1) + ν∗
(

S̃i − S̃4

)
= −5.4049, −4.1248 and −1.8676 under

(r,s) = (1,2).
Applying parts (a) and (b) of Theorem 1 to this example, we could obtain the upper

and lower confidence bounds for δi − δ4, i = 1, 2, 3 with confidence levels of 0.90, 0.95 and
0.975 in Table 2. Since the upper bounds for Drugs 1 and 2 were negative, these two drugs
were selected in a subset of worse than the control populations to reach the probabilities of
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correct selection P* = 0.9, 0.95 and 0.975. Since all lower bounds were negative, no drugs
were selected in a subset of better than the Drug 4 by comparing their median lifetimes

Table 2. The upper and lower confidence bounds for three drugs compared with the control drug
(drug 4).

(r,s) = (1,1)

Xi(r+1) − X4(r+1) + ν∗
(

S̃i − S̃4

)
+ c̃

..
hU

Xi(r+1) − X4(r+1) + ν∗
(

S̃i − S̃4

)
− c̃

..
hL, i = 1, 2, 3

90% 95% 97.5%

δ1 − δ4 −3.389, −7.324 −2.982, −7.747 −2.530, −8.169
δ2 − δ4 −1.971, −5.906 −1.564, −6.328 −1.111, −6.751
δ3 − δ4 0.139, −3.797 0.546, −4.219 0.998, −4.641

(r,s) = (2,1) 90% 95% 97.5%

δ1 − δ4 −3.105, −7.337 −2.625, −7.772 −2.160, −8.222
δ2 − δ4 −1.706, −5.937 −1.225, −6.372 −0.760, −6.823
δ3 − δ4 0.311, −3.921 0.791, −4.356 1.256, −4.806

(r,s) = (1,2) 90% 95% 97.5%

δ1 − δ4 −3.296, −7.213 −2.858, −7.637 −2.419, −8.062
δ2 − δ4 −2.016, −5.933 −1.577, −6.357 −1.139, −6.782
δ3 − δ4 0.241, −3.675 0.680, −4.100 1.118, −4.524

Applying part (c) of Theorem 1 to this example, we could obtain the two-sided
confidence intervals for δi − δ4, i = 1, 2, 3 under confidence levels of 0.90, 0.95 and 0.975
in Table 3. Since the upper limits for Drugs 1 and 2 were negative, we could conclude
that the median lifetimes of these two drugs were worse than Drug 4. Looking at the
UMVUE for the difference between these two drugs with Drug 4 under three censoring
cases, the performance of Drug 1 was worse than Drug 2 comparing with Drug 4. Since the
confidence interval for Drug 3 contained zero, we could claim that the median lifetime of
Drug 3 was not much different from drug 4.

Table 3. The two-sided confidence intervals for three drugs compared with the control drug (drug 4).

(r,s) = (1,1)
(Xi(r+1) − X4(r+1) + ν∗

(
S̃i − S̃4

)
± c̃

..
ht), i = 1, 2, 3

90% 95% 97.5%

δ1 − δ4 (−7.913, −3.087) (−8.335, −2.665) (−8.757, −2.243)
δ2 − δ4 (−6.494, −1.669) (−6.916, −1.247) (−7.339, −0.825)
δ3 − δ4 (−4.385, 0.440) (−4.807, 0.862) (−5.229, 1.285)

(r,s) = (2,1) 90% 95% 97.5%

δ1 − δ4 (−7.922, −2.760) (−8.387, −2.295) (−8.837, −1.845)
δ2 − δ4 (−6.523, −1.360) (−6.988, −0.895) (−7.438, −0.445)
δ3 − δ4 (−4.506, 0.656) (−4.971, 1.121) (−5.422, 1.571)

(r,s) = (1,2) 90% 97.5% 95%

δ1 − δ4 (−7.815, −2.995) (−8.254, −2.556) (−8.692, −2.118)
δ2 − δ4 (−6.535, −1.714) (−6.973, −1.276) (−7.412, −0.838)
δ3 − δ4 (−4.278, 0.543) (−4.716, 0.981) (−5.154, 1.419)

5. Conclusions

When a sampling procedure in an experiment was unexpectedly terminated ear-
lier so that the additional sample for the two-stage sample was not available, the one-
stage procedure could be employed for the multiple comparison with the control. Apply-
ing Lam’s [14,15] technique, we developed multiple comparison procedures with a control
for exponential median lifetimes under heteroscedasticity based on doubly censored sam-
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ple. At last, we used one example in the treatment of leukemia to find the upper and lower
confidence bounds and for each median lifetime of treatment populations compared to the
control population. The two-sided confidence intervals were also obtained and analyzed.
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